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Chemical Potential  μNuclear Superfluid B

Chemical Potential  μNuclear Superfluid B

Figures from  
 Fukushima-Sasaki (2013)
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QCD Critical Point (summary)

State-of-the-art experiment 
□ Plenary Report by Xiaofeng Luo  

No positive signal in Kurtosis for 0.4 < pT < 0.8 GeV  
Positive signal in Kurtosis for 0.4 < pT < 1.2 GeV 

State-of-the-art theory 
□No new proposal / No progress in lattice  

(People more interested in heavy-flavor sector) 
□ Plenary Report by Marlene Nahrgang  

Analogies to known systems / known results  
Dynamical aspects assuming QCP  
Useful simulations if it exists  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Neutron Star EoS (summary)

State-of-the-art EoS constraint to neutron matter 
□Report by Eduardo Fraga 

No assumption about the EoS (matching to pQCD)  
Allowed EoS systematically identified incl. 1st-order 

□Report by Kota Masuda 
Three window model 
Smooth interpolation without any 1st-order 

□Report by Toru Kojo 
A variant of three window model  
Smooth interpolation with/without 1st-order  
Nuclear matter with many-body int. = quark matter
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cated at M = ±M0; we simply postulate the following
form;

P�[M ] = �a(M2
0 �M2)2 (1)

with a parameter a. Here we note that a linear term in M
should be present if the current quark mass is nonzero.
We can neglect this explicit chiral symmetry breaking in
the qualitative level because such a term has only minor
e↵ects on the phase transition in the two-flavor sector.
In the three-flavor case, in contrast, the UA(1) break-
ing term generates a cubic term in M which favors the
first-order phase transition. We will not think of this
situation; our purpose here is to see how the first-order
transition is possible at high density even though it is of
second order at vanishing density. Thus, the above form
of Eq. (1) is valid when all the quarks are massless and
the three-flavor UA(1) breaking is not significant.

Now let us turn finite µ on. As long as µ is smaller
than the lowest-lying mass of fermionic excitation, noth-
ing happens and the vacuum remains empty. Once µ
exceeds a certain threshold M , a finite amount of den-
sity appears. The pressure has a contribution from the
density which is generally expressed as

Pµ[M ] =
Z µ

0
dµ0nq(µ0) . (2)

Here nq(µ) represents the fermion density. In the quasi-
particle picture it is given by the integrated Dirac-Fermi
distribution function with the constituent mass;

nq(µ) = ⌫

Z
d3p

(2⇡)3


1

e("�µ)/T + 1
� 1

e("+µ)/T + 1

�

T=0�! ⌫

6⇡2
(µ2 �M2)3/2 ✓(µ2 �M2) , (3)

where " =
p

p2 + M2 and ⌫ is the fermionic degrees of
freedom (color⇥flavor⇥spin). In two-flavor quark mat-
ter, for relevant example, ⌫ = (3 colors) ⇥ (2 flavors) ⇥
(2 spins) = 12. We note that ✓ denotes the Heaviside
theta function, which signifies that the system at µ < M
is empty. In fact, the theta function is essential to make
a double-peak shape in the total pressure, as we will see
soon.

It is possible to perform the integration (2) to find an
analytical expression with logarithmic terms. To simplify
our qualitative analysis, however, we shall introduce an
approximation as

Pµ[M ] ⇡ ⌫

24⇡2µ2
(µ2 �M2)3 ✓(µ2 �M2) , (4)

which turns out to be a good approximation as shown
in Fig. 1. The solid curve represents Eq. (4), while the
dotted curve is Eq. (2) with Eq. (3) substituted. Because
more particles can reside in the Fermi sphere for smaller
mass, Pµ[M ] has a maximum at M = 0.

Let us consider the condition for P [M ] = P�[M ] +
Pµ[M ] to have a first-order phase transition. Here P�[M ]
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FIG. 1: Comparison between the exact integration in Eq. (2)
(by the dotted curve) and the approximation in Eq. (4) (by
the solid curve).
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FIG. 2: Sketch of the double-peak pressure P [M ] resulting
from the sum of P�[M ] and Pµ[M ].

and Pµ[M ] have a peak at M = M0 and M = 0 re-
spectively (see Fig. 2). The existence of double peaks
in P [M ] requires that µ . M0, meaning that µ should
not be much greater than M0. [So, µ can be larger than
M0 slightly.] This is necessary for the peak at M = M0

to survive. At M = 0 the pressure curvature (i.e. the
coe�cient of the M2 term) should be negative, that is;

a <
⌫

16⇡2

µ2

M2
0

. ⌫

16⇡2
. (5)

At the first-order critical point the peak at M = 0 is as
high as the second peak at M = M0 (neglecting a small
shift by the contribution from Pµ[M ]), which yields the
critical condition that

a ' ⌫

24⇡2

µ4
c

M4
0

. (6)

As long as µ is raised with µ . M0 satisfied, the curvature
condition (5) is su�cient for the existence of µc deduced
from Eq. (6). This is another way to see why we should
have required µ . M0.

QCD vacuum favors 
 a dynamical mass M0

Finite density causes larger pressure 
with lighter mass (in favor of small M)

1st-order transition!
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FIG. 4. Schematic figure of the saturation curve of nuclear
matter with a minimum at ρ0 = 0.17 fm−3 and the binding
energy given by the volume term aV in the Bethe-Weizsäcker
mass formula. An intermediate density ρ < ρ0 can be realized
as a spatial average over bubbles with the core with ρ ∼ ρ0
in the empty vacuum. Though the surface energy effect is
not considered in the above schematic figure where a simple
nucleon-gas picture is depicted, the actual bubble shapes in a
nuclear liquid depend on the surface term aS , etc.

imum as schematically shown in the upper panel of Fig. 4
it would be energetically preferable to form bubbles with
the core with ρ ∼ ρ0 rather than a homogeneous dis-
tribution of dilute ρ. If we consider the surface energy,
the density gradient (Weizsäcker) term, and the charge
neutrality, bubbles should take optimal shapes such as
the nuclear pasta (spaghetti, lasagna, etc) [26]. Such a
state of matter is nothing but a mixed phase associated
with the first-order phase transition, and importantly,
this argument already implies the existence of an inho-
mogeneous ground state near the liquid-gas transition.
In other words, if a mixed phase is characterized by a
typical wave number q, how can we strictly distinguish
such a phase from an inhomogeneous ground state? One
may think that in the case of quark matter the inhomo-
geneity is turned on not in the density only but in the
mass M unlike nuclear matter. We would stress, how-
ever, that M also controls the density and the physics is
just the same if seen in terms of the saturation curve as
in Fig. 3.

It is obvious from Fig. 3 that the vector interaction
as in Eq. (3) disfavors the first-order phase transition.
The minimum in ε/ρB is pushed up by the quadratic
term ∝ ρ2B and eventually the first-order phase transition
disappears when the minimum is lost, as demonstrated
by three solid curves in Fig. 3. In the chiral limit b =
0 the branch of M = 0 is separate, so that the first-
order phase transition survives regardless of the vector
interaction, which may change with different parameters
as we already pointed out. With finite b, however, two
branches with small and large M are smoothly connected
and the minimum diminishes for large b and gv in accord
to Fig. 2.

III. CHIRAL SPIRALS

One may find the usefulness of the saturation curve
for analyses with a wider range of model space. From
now on we shall consider the possibility to form inhomo-
geneous chiral condensates. We here utilize the simplest
Ansatz to introduce it, namely, the one-dimensional chi-
ral spiral; ⟨ψ̄ψ⟩ = χ cos(2qz) and ⟨ψ̄γ5τ3ψ⟩ = χ sin(2qz)
(see Ref. [27] for reviews). This ground state of the chi-
ral spiral can be equivalently described by a chiral ro-
tation ψ = eiγ5τ3qzψ′ with a homogeneous condensate
χ = ⟨ψ̄′ψ′⟩ in the chiral limit. Then, the quasi-particle
dispersion relation in the ψ′-basis is expressed as [27, 28]

ω̃p =
√

p2⊥ + (
√

p2z +M2 ± q)2 , (4)

where ± in front of q corresponds to the flavor and the
chirality that also depends on the sign of pz.

This type of inhomogeneity pattern has been consid-
ered repeatedly in various contexts such as the pion con-
densation in nuclear matter [28], large-Nc QCD [29], the
Overhauser instability [30], the quarkyonic spiral with
confining force [31], and so on. The dispersion rela-
tion (4) should be plugged into Ωmatter/V in Eq. (1).
Unlike the normal dispersion relation, we see that a large
part of the mass effect can be absorbed by q ∼ M , with
which ρ is no longer suppressed even at large M . This is
the reason why a first-order phase transition can occur
from the homogeneous hadronic phase to the chiral spiral
where M is substantially large. Also, we should point out
that the Ginzburg-Landau analysis in Ref. [32] to con-
clude that the chiral spiral is less favored might be inad-
equate; the largest energy gain in Ωmatter/V comes from
the region with large M where the Ginzburg-Landau ex-
pansion should not work.

The physical mechanism to lower the total energy is
the Overhauser effect as argued in Ref. [30]. In the ordi-
nary Overhauser instability the momenta of the spin-up
component are shifted up by pF and those of the spin-
down component are shifted down by pF, so that a gap
opens where two energy dispersion relations cross. In
(1+1)-dimensional NJL model the situation is completely
analogous [27]; a choice of q = 2µq eliminates the µq de-
pendence and the energy gain originates from the fact
that ρ is completely insensitive to M and thus ρ is never
suppressed by M in contrast to the homogeneous solu-
tion. In (3+1)-dimensional case, on the other hand, not
only pz but also p⊥ share the Fermi momentum, and so
the optimal q is not 2µq but rather q ∼ M which will be
confirmed by numerical calculations later.

Thus, Ωmatter always tends to favor the chiral spiral
with q ∼ M , while it is Ω0 that would hinder the growth
of q. In the leading order the vacuum part has an expan-
sion in terms of q as

Ω0[M, q]/V = Ω0[M, q = 0]/V + (αM2 + βb)q2 , (5)

where the first term with α > 0 is a “kinetic” term
against spatial modulation. This term should be van-

Self-bound fermionic systems  
     have a preferred density. 
Diluteness is realized as a  
     “mixed phase” of nuclei.

No argument about whether quarks are self-bound? 
Quark EoS is constrained by neutron stars > 2M⦿
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Sufficient Cond. for QCP
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Vector Interaction

Lv=−gv (ψ̄ γμ ψ)(ψ̄ γμ ψ)  →  ΔΩ=g vρ
2

r

e/r

gv=0
r

e/r

gv≠0

It is obvious at a glance that the vector interaction
                would wash the 1st-order transition out.

r

e/r
A more stable state may have
     a 1st-order phase transition

Meta-stable quark matter 
 can have a 1st-order

July 15, 16, 2014 @ 東北大学 81/152

Vector Interaction

Lv=−gv (ψ̄ γμ ψ)(ψ̄ γμ ψ)  →  ΔΩ=g vρ
2

r

e/r

gv=0
r

e/r

gv≠0

It is obvious at a glance that the vector interaction
                would wash the 1st-order transition out.

r

e/r
A more stable state may have
     a 1st-order phase transition

�" = gv⇢
2

This term is chiral inv. 
Difficult to constrain  
(susceptibility?)
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Landmark on Phase Diagram
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QCD CP 
      or 
anything?
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Models cannot predict the existence of QCP  
but density always favors 1st-order.

QCP is more likely than supersymmetry  
but less likely than dark matter.

July 5 2010 at INPC 29

Open Question  II

End-point of 1st-order = 2nd-order Critical Point

Experimentally challenging and feasible
     if it exists near freeze-out

Theory can tell us
    (its location and) consequences if it exists
                                or
    why it does not exist if it does not

c.f. SUSY, Extra-Dimension, etc...

Fukushima 
at INPC (2010)
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T = 0) should take place at µB = MN � B with MN

and B being the nucleon mass and the binding energy
B ' 16 MeV [20]. Some years ago an interesting pos-
sibility was demonstrated [21]; the chemical freeze-out
condition at low-T and high-µB could be rather sensitive
to nuclear matter properties. The present work aims to
pursue the idea along the same line to show the agree-
ment for not only the chemical freeze-out condition but
also the fluctuations.

One might have an impression that the HRG is a sort
of opposite to nuclear matter and one should abandon
the HRG immediately to switch to the nuclear physics
terrain. This intuition is not totally correct, however,
and we know that the independent quasi-particle picture
makes good sense inside of nuclei and nuclear matter.
Hence, on the formal level, the HRG-like model with
“renormalized” parameters may have a chance to work
continuously from low-µB to high-µB. Indeed, the rel-
ativistic mean-field (RMF) model of nuclear matter is
designed in this spirit. The simplest setup of the RMF
is the �-! model [22] as was adopted in Ref. [21]. This
model deals with nucleons as relativistic quasi-particles
moving in the scalar mean-field � and the vector mean-
field !. I note that we can safely neglect ⇡ fluctuations
as long as we concern the baryon number at small T .
If needed, I can extend my present analysis so as to in-
clude ⇡ fluctuations, for example, with the renormaliza-
tion group improvement [23].

This paper is organized as follows: I give a detailed
description of fluctuations within the framework of the
HRG model in Sec. II. Then, based on the similarity to
the HRG model, I introduce the RMF model in Sec. III
and I present my central numerical results from the RMF
model in Sec. IV. In Sec. V I give more considerations on
the microscopic structures of my numerical results. I also
cover discussions on the di↵erence between the baryon
number and the proton number to discover that the dif-
fusion in isospin space does not a↵ect my results as long
as the Boltzmann approximation makes sense, which is
addressed in Sec. VI. I finally summarize this work in
Sec. VII.

II. FLUCTUATIONS AND THE HADRON
RESONANCE GAS

First of all, before going into the descriptions of the
HRG model, I should elucidate physical observables of
my interest. I follow the standard convention as used in
Ref. [18] for thermal fluctuations which are derived from
the derivatives of the pressure with respect to the relevant
chemical potentials. For the baryon number fluctuation,
thus, I calculate the following dimensionless quantities:

�(n)
B ⌘ @n

@(µB/T )n
p

T 4
, (1)

from which I can construct the mean value (i.e., the par-

ticle number); M ⌘ V T 3�(1)
B . For an arbitrary distri-

bution I can define the Gaussian width �2 together with
the non-Gaussian fluctuations such as the skewness S and
the kurtosis  as [13, 18]:

�2

M
⌘ �(2)

B

�(1)
B

, S� ⌘ �(3)
B

�(2)
B

, �2 ⌘ �(4)
B

�(2)
B

. (2)

Therefore, once some theoretical estimates provide us
with the pressure p as a function of µB, I can give a
prediction for these fluctuations under an assumption of
the dominance of thermal fluctuations.

Second, to make a contact with the collision experi-
ment, it is necessary to relate the collision energy

p
sNN

and T and µB. Fortunately, such parametrization of
T (

p
sNN ) and µB(

p
sNN ) has been well established along

the chemical freeze-out line [14] that reads:

T (µB) = a� b µ2
B � c µ4

B , (3)

µB(
p
sNN ) =

d

1 + e
p
sNN

, (4)

where parameters are chosen as a = 0.166 GeV, b =
0.139 GeV�1, c = 0.053 GeV�3, d = 1.308 GeV, and
e = 0.273 GeV�1 to reproduce experimentally observed
particle yields. Charge and strangeness chemical poten-
tials, µQ and µS , are also parametrized in a similar man-
ner. In my present analysis, I numerically checked that
the inclusion of µQ and µS hardly changes the fluctuation
results, and so I neglect them for clarity of presentation.
These definitions and parametrizations are robust and
unchanged for any model applications.

Now I take a step toward the HRG model. Let us start
with a simple demonstration of free nucleon gas and then
proceed to the realistic HRG model next. In the estimate
with non-interacting hadrons (in which the canonical fac-
tor � is not included) I make use of the standard expres-
sion of the free grand canonical partition function. That
is, the pressure from baryons (fermions) is prescribed as

pfree(mN, µB) =
N
X

i

2T

Z

d3p

(2⇡)3

n

ln
⇥

1+e�("p�µB)/T
⇤

+ ln
⇥

1 + e�("p+µB)/T
⇤

o

. (5)

Here N is 2 for nucleons corresponding to the isospin
degeneracy and the pressure depends on the nucleon
mass mN through the energy dispersion relation: "p ⌘
p

p2 +m2
N. I can then take the derivatives of the above

expression, which results in

�(n)
B =

4

T 3

Z

d3p

(2⇡)3
X(n)(p) , (6)

where 4 appears from the spin and the isospin degeneracy

Skewness Kurtosis
k ~ how sharp

S ~ how distorted

Net Baryon (Proton) NumberE
ve

nt
 N

um
be

r Discovery of QCP??? 
→ Talks by X. Luo / J. Deng on Thurs.
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tively. We also enumerate the quark number suscep-
tibility that we will discuss later. Here we have in-
serted the Polyakov loop source ¥ and ¥̄ in the poten-
tial as Ω

Polyakov

! Ω
Polyakov

° T (¥` + ¥̄ ¯̀). It is cru-
cial to notice that we have to take the derivative in a
way that it hits the mean-fields also. That means that
we should take @hūui/@mud, @2hūui/@m2

ud, @hs̄si/@mud,
@2hs̄si/@m2

ud, @`/@mud, @2`/@m2

ud, etc into account to
evaluate Eq. (20) for instance. Otherwise we would miss
the loop effect and the mixing to other channels.

We can justify this procedure by evaluating the sus-
ceptibility in an independent (and equivalent) method.
By definition, in general, the susceptibility is to be iden-
tified as the inverse of the potential curvature. For the
purpose to compute the curvature inverse, we should con-
sider the curvature matrix C whose dimensionless com-
ponents are given by Cuu = T 2@2Ω

PNJL

/@hūui2, Cus =
T 2@2Ω

PNJL

/@hūui@hs̄si, Cu` = T°1@2Ω
PNJL

/@hūui@`,
C`¯` = T°4@2Ω

PNJL

/@`@ ¯̀, and so on. In the present case
C is a 4 £ 4 matrix. Then the diagonal components of
C°1 give the susceptibility which is an involved expres-
sion in terms of Cuu, Cus, Cu`, etc. Roughly speaking,
the diagonal part, C°1

uu , C°1

ss , C°1

`¯`
, corresponds to soft-

mode propagators and the off-diagonal part, Cus, Cu`,
C``, C

¯`¯`, and so on, corresponds to mixing vertices. It is
immediate to make sure that C°1 certainly leads to ex-
actly the same results as obtained from Eqs. (20), (21),
and (22). This matrix method has an advantage in giving
us the mixing angle between each mode.

As we can notice from Fig. 4 showing the susceptibility
as a function of T , two crossovers associated with hūui
and ` are located close to each other but do not coin-
cide precisely. As long as we treat the chiral condensate
and the Polyakov loop as independent variables as in the
PNJL model, two crossovers attract each other to some
extent but have a short “repulsion.” Within this kind of
model approach it is hence hard to explain the complete
coincidence without fine tuning.

One interesting strategy is not to explain the locking
but to build a new model based on the complete locking
of chiral restoration and deconfinement. As discussed
in Ref. [10], most of lattice results support the idea that
there is only one order parameter field ¡ that is a mixture
of the æ meson and the electric glueball (Polyakov loop).
Then, we could make a model with the chiral condensate
given by hūui / ¡ cos µ and the Polyakov loop by ` /
¡ sin µ with some potential energy for the mixing angle
µ between them. The work along this direction is under
progress [43].

D. Quark Number Susceptibility

It is difficult to probe physical observables sensitive
to the chiral and Polyakov loop susceptibility directly in
experiments. In fact, it is impossible to count the num-
ber fluctuation of the æ meson and the glueball which
eventually decay to the lightest º meson. From the ex-
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FIG. 5: Quark number susceptibility calculated in the PNJL
model for 2 + 1 flavor quark matter at zero density.
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FIG. 6: Ratio of the fourth derivative to the quark number
susceptibility calculated in the PNJL model for 2 + 1 flavor
quark matter at zero density.

perimental point of view the quark number susceptibility
should be a better measure because the quark number is
a conserved quantity. The fluctuation in the baryon mul-
tiplicity would be directly related to the quark number
susceptibility, ¬q [12, 24, 44]. Also in Refs. [41, 45] ¬q

has been evaluated and discussed in the two-flavor PNJL
model. Actually the PNJL model can reproduce ¬q mea-
sured on the lattice in the two-flavor case as beautifully
illustrated in Ref. [41].

We plot our results in the 2 + 1 flavor case in Fig. 5.
We can see, as expected, that the 2 + 1 flavor quark

Historically, Kurtosis was proposed as an order parameter 
for deconfinement :
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Figure 3: The ratios of fourth and second cumulants of quark number (left)
and charge (right) fluctuations. At low-temperatures the ratios Rq

4,2 and RQ
4,2

are compared to resonance gas model predictions. At high-temperature the
asymptotic ideal-gas value is indicated by a horizontal line. The dashed line
represents the estimate for the value of the ratios at T = 1.4Tc in the presence
of coloured qq and qg states asssuming that the qq states contribute with half
their statistical weight as discussed in the text.

A model containing heavy coloured bound states above Tc has been put
forward by E. Shuryak and I. Zahed [11] to explain the experimental evidence
for strong interactions in the hot and dense medium of quarks and gluons
created in heavy-ion collisions at RHIC. In the strongly coupled QGP model
(sQGP), it is assumed that, in addition to heavy quasi-particles (quarks and
gluons with large thermal masses), also a large number of coloured bound
states contribute to the thermodynamics in the high-temperature phase of
QCD. The model suggests, that aside from states carrying net quark number
1 and charge Q = 1/3 and 2/3 there will also be states with net quark number
2 and charge Q = 1 and 4/3 contributing to the thermodynamics in the QGP.
From the discussion given in the previous section it should be obvious that
this must have consequences for quark number and charge fluctuations in the
QGP and the ratios Rq

4,2 and RQ
4,2 should be sensitive to these new states.

The lattice results shown in Fig. 3, can thus put bounds on their relative

13

Ejiri et al. (2005)

Model result (2008)

As long as fluctuations are dominated  
at the chemical freezeout, no way to  
see such fluctuations in the deconfined  
phase (small suppression?)
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FIG. 3. (Color online) HRG-estimated baryon density (in-
cluding not only nucleons but all baryonic resonances of the
particle data contained in the THERMUS2.3 package) as a
function of T and µB. The nucleon contribution is nearly a
half of shown results. The vertical lines represent the col-
lision energy with spacing by 1 GeV. The extremal point
corresponds to

p
sNN ' 8 GeV. The chemical freeze-out line

is drawn according to Eqs. (3) and (4).

Figs. 4 and 5 are pushed down by a few percent at most
as compared to the current µQ = µS = 0 case. This
check justifies my discussions without µQ and µS taken
into account.

III. SIMILARITY BETWEEN HRG AND RMF

It is nuclear matter (that is a self-bound system of in-
finite nucleons) that lies in the opposite limit to the non-
interacting matter described by the HRG model. Never-
theless, theoretically speaking, the formulation of nuclear
matter, namely the RMF, is not such far from the HRG
model or they actually share similarity to some extent.

The simplest RMF is known as the �-! model defined
by the partition function:

p = 2 · 2T
Z

d3p

(2⇡)3

n

ln
⇥

1 + e�("p�µ⇤
B)/T

⇤

+ ln
⇥

1 + e�("p+µ⇤
B)/T

⇤

o

� m2
��

2

2
+

m2
!!

2

2
, (9)

where the quasi-particle dispersion relation is "p ⌘
p

p2 +m⇤2
N . Here, quantities with asterisk are “in-

medium” or “renormalized” ones which contain a shift
by the mean-field as

m⇤
N ⌘ mN � g�� , µ⇤

B ⌘ µB � g!! . (10)

These mean-fields of � and !, or equivalently, m⇤
N and µ⇤

B
are determined with the stationary conditions: @⌦/@� =
@⌦/@! = 0, which lead to the gap equations. By
choosing the model parameters appropriately [26]; i.e.,
mN = 939 MeV, m� = 550 MeV, m! = 783 MeV,
gs = 10.3, g! = 12.7, we can reproduce the satura-
tion properties of symmetric nuclear matter with the

saturation density given by 0.17 nucleons/fm3 and the
binding energy per nucleon given by 16.3 MeV. I note
that this simplest �-! model fails in reproducing the em-
pirical value of the compressibility of symmetric nuclear
matter [27]. It is possible to overcome this problem by
extending the model with self-coupling potential of the
mean-fields. For the fluctuations of my present inter-
est, however, such improvement of the model makes only
minor modifications on the final results [28]. This also
implies that a di↵erent choice of m�, e.g. 500 MeV would
not change the final results because gs and g! should be
readjusted to reproduce the saturation density and the
binding energy, and so the di↵erence would be the com-
pressibility only.

From Eq. (9) it is obvious that the RMF estimate
should reduce to nothing but the HRG estimate or Eq. (5)
if I freeze the implicit dependence on µB through the so-
lutions of � and !, or equivalently, m⇤

N and µ⇤
B. In this

sense we can interpret the RMF treatment as a variation
of the HRG model augmented with mean-fields. Unlike
the HRG model, however, the mean-fields have implicit
dependence on µB, from which I should anticipate non-
trivial contributions for the fluctuations.

In closing of this section, I make an explicit statement
about the validity regions of the HRG model and the
RMF models. The HRG model is the most successful
at the top energy of the RHIC, but the agreement of
the thermal model fit to the experimental data slightly
becomes worse for the LHC data. There is no clear ex-
planation for this, but it is conceivable that the HRG
model works the best near the crossover region of de-
confinement. The meson sector of the HRG model is a
valid picture in a fictitious world of Nc ! 1 with which
meson interactions would be turned o↵. The baryon sec-
tor behaves di↵erently, however, and so the HRG model
should naturally break down at high baryon density. A
conservative estimate for this would suggest a validity re-
gion, µB < T , that corresponds to

p
sNN & 10 GeV. On

the other hand, the RMF model is supposed to describe
nuclear matter which is reached at small

p
sNN , and the

validity region is limited by my approximation to neglect
pion fluctuations. Although the e↵ect of pions is indi-
rect for the baryon number fluctuations, it could make a
quantitative modification if the temperature is compara-
ble to the pion mass. This condition would translate into
the validity region

p
sNN . 10 GeV in the energy unit.

So, one may well expect that the HRG model at high en-
ergy should be taken over smoothly by the RMF model
in the intermediate energy

p
sNN ⇠ 10 GeV, which could

be of course understood as another manifestation of the
triple-point-like region [24].

IV. CENTRAL NUMERICAL RESULTS

Figures 4 and 5 show my results for S� and �2 esti-
mated in the HRG (green dotted line) and in the RMF
(blue dashed line) on top of the BES/STAR data (red

Estimate from HRG (w/o QCP)

Baryon density is  
 GREATER than  
  normal nuclear density  
    around where people 
     conjecture QCP!?

QCD  
Triple Point
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Densest = Strangest
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More baryons 
        ↓ 
More L, X, W 
        ↓ 
More K+ 

(ns = 0)

Serious problem 
in neutron star phys. 
* Soft EoS 
* Fast cooling
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Neutron Star EoS
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QM talk by Toru Kojo
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Mass Constraint

Alford, Burgio, Han, Taranto & Zappalá (2015)

J. M. Lattimer Constraints on the Presence of Quark Matter in Neutron Stars

17

No quark matter in NS!

First Order Phase Transition in Neutron Stars

I Generic first order phase
transiton with 3 parameters: �",
"t and Pt .

I Make 2 dimensionless parameter
combinations: �"/"t and Pt/"t .

I Critical condition for existence of
stable hybrid core connected to
normal branch (A, D):

�"

"t
 1

2
+

3

2

Pt

"t
.

I It is also possible to have a
stable hybrid core disconnected
from normal barnch (B, D).

I Parametrize high-density phase
with a constant sound speed
c

2
QM

= dp/d" ⇠ 1/3.

Alford, Han & Prakash (2013)

J. M. Lattimer Constraints on the Presence of Quark Matter in Neutron Stars

No (very weak) 1st-order 
1st-order at very high density
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Question

18

No Microscopic Dynamics…

You can say nothing about :

Whether you have nuclear / quark matter? 
How much strangeness you have? 
What is the rate of cooling you expect?

We need something more concrete!
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Larry’s Puzzle

19

fishy, fishy, fishy… 
QCP consistent with NS?

Chemical Potential  μNuclear Superfluid B

Possible 
  answer 
     ↓ 
Another CP
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Larry’s Puzzle

20

fishy, fishy, fishy… 
QCP consistent with NS?

Chemical Potential  μNuclear Superfluid B

Possible 
  answer 
     ↓ 
NO CP



Oct. 7, 2015 @ Wuhan

Nuclear Matter = Quark Matter

21

hudi
What if a diquark condensates

does not break any symmetry

2SC can coexist in nuclear matter !?  (Fukushima-Kojo)

hudi, hūui, hd̄di can coexist

Quark Matter (CSC) and Nuclear Matter : indistinguishable

(3-flavor symmetric) CFL has more elegant arguments
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Deconfinement at High T

22

No interaction            No saturation
(Large-Nc QCD : Non-interacting mesons)

May 24 2014 @ QM2014

Deconfinement at high T

10

No interaction            No saturation
(Large-Nc QCD : Non-interacting mesons)
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Deconfinement at High T

23

Crossover = Almost free gas + Finite extent
May 24 2014 @ QM2014

Deconfinement at high T

11

Elementary d.o.f. through interaction
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Dual Descriptions at High T

24

 HRG Lattice

pQCD
Introduction of Polyakov loop  
(center-symmetric model: Vuorinen-Yaffe)

Introduction of confinement 
(Gribov-Zwanziger: talk by Nan Su)

Hadronic EoS can be reproduced  
in terms of partonic degrees of freedom

Very useful for smooth extrapolation to high T
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Deconfinement at High NB

25

Nc Nc

Interaction never goes off

Quarks exchanged in NN int. 
Confined?  Deconfined?

Deconfined when NN, NNN, NNNN… 
all become of the same order

Kojo et al. (2014)

Nuclear matter is already deconfined
~ quarkyonic matter
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Dual Descriptions at High NB
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Fig. 1.— Vector coupling in the 2SC phase fitted
with APR for H = 1.5Gs (lower solid curve) and
H = 1.6Gs (upper solid curve). The interpolat-
ing fit results to the CFL phase with d = 0.4 are
represented by the dotted curves.
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Fig. 2.— Constituent quark masses and the di-
quark gap ∆ud in the 2SC phase as functions of
µB in the case of H = 1.5Gv (corresponding to the
solution shown by a lower solid curve in Fig. 1).
The chiral phase transition is a smooth crossover
because of the vector coupling.

(upper solid curve) in Fig. 1. We emphasize that
we did not assume any functional form a priori
and Gv(µB) shown in Fig. 1 results solely from the
fit to APR once we make a choice of the diquark
coupling H. We vary H to check the sensitiv-
ity and will see that this choice is near the upper
limit not to violate the causality. It is important
to note that the chiral phase transition is a very
smooth crossover in the presence of large Gv, so
that this 2SC phase can accommodate both di-
quark and chiral condensates for any µB. This is
clear in Fig. 2 where the constituent quark masses,
Mu, Md, Ms, and the gap energy ∆ud are given
as functions of µB. There is a small discrepancy
between Mu and Md because of the electric charge
neutrality condition that breaks isospin symmetry.

Interestingly, we have found that the best fit
form of Gv(µB) is an inverse logarithm for both
H = 1.5Gs and H = 1.6Gs. Such an inverse loga-
rithmic is quite suggestive because it is consistent
with the common form of the running coupling
constant at one-loop level. However, the valid-
ity of this fitting should be lost at some point of
the baryon density. In fact, at sufficiently high
baryon density the ground state should be the
CFL phase. Moreover, the vector coupling Gv

should be ∼ 0.5Gs or greater to support the mas-
sive neutron star with M ! 2M⊙. To satisfy the
boundary conditions, i.e., the smooth connection
to APR in the lower-density side and to the CFL
phase with Gv ! 0.5Gs in the higher-density side,
we must modify Gv(µB) from an inverse logarithm
to the following form:

Gv(µB)/Gs =
a

log[(µB − b)/c]
+ d (4)

with an offset by d. Once we fix d, we can de-
termine other three parameters, a, b, c using the
smooth connection to APR. We changed d to find
that the massive neutron star with M > 2M⊙ is
impossible with d " 0.3. We shall therefore choose
d = 0.4 throughout this work. The parameters
fixed in such a way, for H = 1.5Gs and 1.6Gs

respectively, are listed in Tab. 1 and the corre-
sponding Gv(µB) that interpolates between APR
and the CFL phase is overlaid by dashed curves
in Fig. 1. We note that, for the parameter de-
termination, we took the fitting range from µq =
(340 ∼ 345) MeV (i.e., µB = (1.02 ∼ 1.035) GeV).

With this running-Gv we can find the CFL so-

7

Conventional inverse-log naturally appears  
from the fit to NM EoS… accidental???

Fukushima-Kojo (2015)
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lution as well as the 2SC phase and then we can
locate a first-order phase transition between them
by comparing the pressure. In Fig. 3 we show an
example for H = 1.5Gv to find a first-order phase
transition at µB = 1.31 GeV where the pressure
of the interpolating 2SC phase with running Gv

and the CFL phase crosses. We make a remark on
the connection between APR and the 2SC phase
around µB ∼ 1 GeV. From Fig. 3 one might think
that APR has a slightly larger pressure above the
fitting region, and so APR would be rather fa-
vored. To resolve such confusion we here again
emphasize our picture of the quarkyonic scenario.
The change from NM to QM is not any phase tran-
sition but what we assume is a dual regime around
µB ∼ 1 GeV in which NM is gradually taken over
by QM. In contrast to this smooth crossover from
NM to QM, the change from the 2SC phase to
the CFL phase is a genuine physical phase tran-
sition with different symmetry-breaking patterns.
In many model studies including the present work,
this phase transition turns out to be of first order.

Now that we have the EoS for the whole range
of µB from NM to CSC, we can compute not only
the pressure P but the energy ε = µBnB − P as
well. Actually, the relation of P vs ε is essential for
the estimation of the neutron star mass. Because
ε involves a first derivative in nB, its value jumps
discontinuously at the first-order phase transition.
We can see this behavior in our numerical results
shown in Fig. 4. It is also clear in Fig. 4 that the
2SC part hardly changes with different choices of
H. We can explain this minor dependence from
the fact that we impose the same boundary condi-
tion of APR at lower density. The other boundary
condition of the CFL phase side is, on the other
hand, loosely constrained by the massive neutron
star, and so there remains H dependence in the
CFL part as is the case in Fig. 4. This fact im-
plies that, if we knew the EoS in the limit of the
high baryon density from, e.g. pQCD calculations,
a combination of H and Gv could be better con-
strained.

H/Gs d a b [GeV] c [GeV]
1.5 0.4 0.05283 0.4049 0.5735
1.6 0.4 0.1127 0.2942 0.6804

Table 1: Parameters for the interpolating Gv(µB)
between APR and the CFL phase.
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Fig. 3.— Pressure comparison of the 2SC phase
(dashed curve) and the CFL phase (solid curve) for
H = 1.5Gs. The pressure of APR (dotted curve)
is also shown for reference.
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tion (dotted curve) is shown for reference, though
the plotted range is outside of its validity region.
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One can deduce the sound velocity (squared)
c2s = ∂P/∂ε from the slope of curves in Fig. 4.
We can numerically take the derivative of P with
respect to ε and present obtained c2s in Fig. 5. It
is important to check the causal condition that
c2s should not exceed the unity (i.e., the speed of
light in the natural unit). In the present setup,
as understood from Fig. 5, the causality is not
violated.

The structure of c2s is almost the same irrespec-
tive of the choice of H; with increasing ε it mono-
tonically increases in the APR region and then
has a peak in the 2SC phase. Once a first-order
phase transition to the CFL phase occurs, c2s is
pushed down to ∼ 0.5. In the limit of large ε or
high baryon density, c2s asymptotically approaches
∼ 0.6 which slightly depends on H. An interest-
ing observation in Fig. 5 is that the peak height
strongly depends on H and if H is greater than
∼ 1.6Gs, it would go beyond the unity, which
would violate the causality. Therefore, such a
large H is not allowed and H = 1.6Gs is close to
the upper limit for our choice of d = 0.4 in Eq. (4).
In this way we find that there is not much uncer-
tainty in the EoS determination after all.

5. Mass-radius relation

To solve the M -R relation from the TOV equa-
tion what we need is the EoS shown in Fig. 4.
Plugging our EoS to the TOV equation and chang-
ing the initial condition that is the central pressure
at r = 0, we can get a curve in the plane of the
mass and the radius of the neutron star as is just
the standard procedure.

We summarize our results in Fig. 6. The M -R
curves belowM⊙ are essentially determined by the
APR EoS up to nB ∼ 2n0. (The tail at large R
is extremely sensitive to the crust EoS, for which
we adopt the SLy model by Douchin & Haensel
(2001).) Then, the 2SC curves start to take off
from the APR by degrees. The 2SC curve’s having
the larger radii than the APR originates from a
stiffer EoS in the 2SC phase at nB > 2n0. In the
vicinity of M ∼ 2M⊙ the curves have a turning
point which signals the phase transition from the
2SC phase to the CFL phase. The maximal mass
in our parametrization reaches ≃ 2.2M⊙.

The neutron star radii at the canonical mass
1.4M⊙ typically spread over R = (9 ∼ 16) km,
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Fig. 5.— Sound velocity squared as a function
of the energy for H = 1.5Gs (solid curve) and
H = 1.6Gs (dashed curve). The APR extrapola-
tion (dotted curve) is shown for reference.
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Fig. 6.— M -R relation for H = 1.5Gs (solid
curve) and H = 1.6Gs (dashed curve). The APR
result (dotted curve) is shown for reference.

9

Severe constraint onto model space

* gv (vector) should be large to support >2M⦿ 
* H (diquark) should be large to be dual to NM 
* H (diquark) should be small not to violate causality 
* 1st-order from 2SC to CFL unavoidable (strangeness)
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lution as well as the 2SC phase and then we can
locate a first-order phase transition between them
by comparing the pressure. In Fig. 3 we show an
example for H = 1.5Gv to find a first-order phase
transition at µB = 1.31 GeV where the pressure
of the interpolating 2SC phase with running Gv

and the CFL phase crosses. We make a remark on
the connection between APR and the 2SC phase
around µB ∼ 1 GeV. From Fig. 3 one might think
that APR has a slightly larger pressure above the
fitting region, and so APR would be rather fa-
vored. To resolve such confusion we here again
emphasize our picture of the quarkyonic scenario.
The change from NM to QM is not any phase tran-
sition but what we assume is a dual regime around
µB ∼ 1 GeV in which NM is gradually taken over
by QM. In contrast to this smooth crossover from
NM to QM, the change from the 2SC phase to
the CFL phase is a genuine physical phase tran-
sition with different symmetry-breaking patterns.
In many model studies including the present work,
this phase transition turns out to be of first order.

Now that we have the EoS for the whole range
of µB from NM to CSC, we can compute not only
the pressure P but the energy ε = µBnB − P as
well. Actually, the relation of P vs ε is essential for
the estimation of the neutron star mass. Because
ε involves a first derivative in nB, its value jumps
discontinuously at the first-order phase transition.
We can see this behavior in our numerical results
shown in Fig. 4. It is also clear in Fig. 4 that the
2SC part hardly changes with different choices of
H. We can explain this minor dependence from
the fact that we impose the same boundary condi-
tion of APR at lower density. The other boundary
condition of the CFL phase side is, on the other
hand, loosely constrained by the massive neutron
star, and so there remains H dependence in the
CFL part as is the case in Fig. 4. This fact im-
plies that, if we knew the EoS in the limit of the
high baryon density from, e.g. pQCD calculations,
a combination of H and Gv could be better con-
strained.

H/Gs d a b [GeV] c [GeV]
1.5 0.4 0.05283 0.4049 0.5735
1.6 0.4 0.1127 0.2942 0.6804

Table 1: Parameters for the interpolating Gv(µB)
between APR and the CFL phase.
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One can deduce the sound velocity (squared)
c2s = ∂P/∂ε from the slope of curves in Fig. 4.
We can numerically take the derivative of P with
respect to ε and present obtained c2s in Fig. 5. It
is important to check the causal condition that
c2s should not exceed the unity (i.e., the speed of
light in the natural unit). In the present setup,
as understood from Fig. 5, the causality is not
violated.

The structure of c2s is almost the same irrespec-
tive of the choice of H; with increasing ε it mono-
tonically increases in the APR region and then
has a peak in the 2SC phase. Once a first-order
phase transition to the CFL phase occurs, c2s is
pushed down to ∼ 0.5. In the limit of large ε or
high baryon density, c2s asymptotically approaches
∼ 0.6 which slightly depends on H. An interest-
ing observation in Fig. 5 is that the peak height
strongly depends on H and if H is greater than
∼ 1.6Gs, it would go beyond the unity, which
would violate the causality. Therefore, such a
large H is not allowed and H = 1.6Gs is close to
the upper limit for our choice of d = 0.4 in Eq. (4).
In this way we find that there is not much uncer-
tainty in the EoS determination after all.

5. Mass-radius relation

To solve the M -R relation from the TOV equa-
tion what we need is the EoS shown in Fig. 4.
Plugging our EoS to the TOV equation and chang-
ing the initial condition that is the central pressure
at r = 0, we can get a curve in the plane of the
mass and the radius of the neutron star as is just
the standard procedure.

We summarize our results in Fig. 6. The M -R
curves belowM⊙ are essentially determined by the
APR EoS up to nB ∼ 2n0. (The tail at large R
is extremely sensitive to the crust EoS, for which
we adopt the SLy model by Douchin & Haensel
(2001).) Then, the 2SC curves start to take off
from the APR by degrees. The 2SC curve’s having
the larger radii than the APR originates from a
stiffer EoS in the 2SC phase at nB > 2n0. In the
vicinity of M ∼ 2M⊙ the curves have a turning
point which signals the phase transition from the
2SC phase to the CFL phase. The maximal mass
in our parametrization reaches ≃ 2.2M⊙.

The neutron star radii at the canonical mass
1.4M⊙ typically spread over R = (9 ∼ 16) km,
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Severe constraint onto model space

* gv (vector) should be large to support >2M⦿

Impossibly difficult to build a model that has 
 - Diquark-driven quarkyonic matter 
 - QCD critical point
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Astrophysical constraints are quite useful 
Once we have a reliable description of nuclear/quark matter,  
we can easily extrapolate it to finite T accessed by BES.

One example: what happens if we calculate Kurtosis using 
  a conventional NM model (Walecka-model).
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Fukushima (2014) 
cf. Floechinger-Wetterich
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Key Questions

IF the QCP signal in Kurtosis is real, what 
happens for Skewness?  Similar anomaly seen? 

Inhomogeneous phase?  ALL models favor 
inhomogeneous phases than the QCP so far… 

Signal for 1st-order phase transition? 
 Mixed phase / inhomogeneous phase 

Strangeness??? Heavier flavor???

30
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Still need more digestions
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214 A. Bazavov et al. / Physics Letters B 737 (2014) 210–215

Fig. 2. The left hand figure shows two ratios of fourth order baryon-charm (BC ) correlations. In an uncorrelated hadron gas both ratios receive contributions only from 
charmed baryons. Similarly, for the right hand figure the ratio χC

4 /χ C
2 is dominated by and (χC

2 − χ BC
22 )/(χ C

4 − χ BC
13 ) only receives contributions from open charm mesons. 

The horizontal lines on the right hand side of both figures show the infinite temperature non-interacting charm quark gas limits of the respective quantities. The shaded 
region indicates the chiral crossover temperature at the physical pion mass in the continuum limit, Tc = (154 ± 9) MeV, determined from the maximum of the chiral 
susceptibility [3]. Calculations have been performed on lattices of size 323 · 8 (filled symbols) and 243 · 6 (open symbols).

Fig. 3. Ratios of baryon-electric charge (B Q ), baryon-strangeness (B S) and baryon-
charm (BC ) correlations calculated on lattices of size 323 · 8. In the case of B Q and 
B S correlations we show results from the (2 +1)-flavor calculations where B and Q
do not contain any charm contribution. These data are taken from Refs. [10,33]. The 
shaded region shows the chiral crossover region as in Fig. 2. Horizontal lines on the 
right side show corresponding results for an uncorrelated quark gas. It should be 
noted that this limiting value is not defined for χ B Q

31 /χ B Q
11 since the denominator 

as well as the numerator vanishes in perturbation theory up to O(g4).

that for n being odd, χ BC
n1 /χ BC

11 = 1 in a hadron gas and 31−n in an 
uncorrelated charm quark gas.

Subtracting any of the BC-correlations from the quadratic or 
quartic charm fluctuations provides an approximation for the open 
charm meson pressure in a gas of uncorrelated hadrons. We thus 
expect for instance, the relation

MC = χ C
4 − χ BC

13 = χ C
2 − χ BC

22 (9)

to hold at low temperatures. Their ratio thus should be unity 
at low temperatures as long as the HRG description is valid. 
Fig. 2 (right) shows the ratio of the two observables introduced 
in Eq. (9). It is obvious from the figure that also in the meson sec-
tor, an HRG model description breaks down in the crossover region 
at or close to Tc .

The behavior seen in Fig. 2 for correlations between net 
charm fluctuations and net baryon number fluctuations, in fact, 
is quite similar to the behavior seen in the strangeness sector 
(B S-correlations) [10] as well as in the light quark sector which 
dominates the correlations between net electric charge and net 
baryon number (B Q -correlations) [22]. In Fig. 3 we show a com-
parison of ratios of cumulants of such correlations. For the B S and 
B Q correlations with the lighter quarks we have two additional 

data points below 156 MeV. In the charm sector we choose a ra-
tio of cumulants involving higher order derivatives in the charm 
sector as correlations involving only first order derivatives have 
large statistical errors. These ratios all should be unity in a gas 
of uncorrelated hadrons. It is apparent from Fig. 3 that such a 
description breaks down for charge correlations involving light, 
strange, or charm quarks in or just above the chiral crossover re-
gion.

6. Abundance of open charm hadrons

We now turn to the analysis of ratios of charge correlations 
and fluctuations that are, in contrast to the ratios shown in Fig. 2, 
sensitive to some details of the open charm hadron spectrum. We 
construct partial pressure components for the electrically charged 
charmed mesons and the strange-charm mesons, M Q C ≃ χ Q C

13 −
χ B Q C

112 and M SC ≃ χ SC
13 − χ B SC

112 , respectively. We also consider the 
partial pressure of all open charm mesons MC = χ C

4 − χ BC
13 as mo-

tivated in Eq. (9). Using these observables we construct ratios with 
cumulants, which in an HRG receive contributions only from dif-
ferent charmed baryon sectors in the numerator,

R BC
13 = χ BC

13

MC
, R Q C

13 = χ B Q C
112

M Q C
, R SC

13 = −χ B SC
112

M SC
. (10)

In an HRG, the first ratio just gives the ratio of charmed baryon 
and meson pressure, (R BC

13 )H RG = BC /MC . In the two other cases, 
the numerator is a weighted sum of partial charmed baryon pres-
sures in charge sectors |X | = 1 and |X | = 2 with X = Q and S , 
respectively. These ratios are shown in Fig. 4.

HRG model predictions for these ratios strongly depend on 
the relative abundance of the charmed baryons over open charm 
mesons. Shown in Fig. 4 are results obtained from the PDG-HRG 
calculation (dashed lines) and the QM-HRG (solid lines). Clearly 
in the temperature range of the QCD crossover transition, the 
lattice QCD data for these ratios are much above the PDG-HRG 
model results. In all the cases, the deviation from the PDG-HRG 
at T = 160 MeV is 40% or larger. As discussed in Section 2, this 
may not be too surprising as only a few charmed baryons have so 
far been listed in the particle data tables. The lattice QCD results 
instead show good agreement with an HRG constructed from open 
charm meson and baryon spectra calculated in a relativistic quark 
model [17,18]. The difference in PDG-HRG and QM-HRG model cal-
culations mainly arises from the baryon sector (see Fig. 1). The 
observables shown in Fig. 4 thus provide first-principles evidence 
for a substantial contribution of experimentally so far unobserved 

Boltzmann approximation is well suited. It reflects that the
relevant degrees of freedom carry integer strangeness
jSj ¼ 0, 1, 2, 3 and integer baryon number jBj ¼ 0, 1.

In Fig. 2, we study the partial pressures of the strange
hadrons using the LQCD results for the four combin-
ations Mðc1; c2Þ, B1ðc1; c2Þ, B2ðc1; c2Þ, and B3ðc1; c2Þ [see
Eqs. (3)–(6)], each for three sets of (c1, c2). One of the
combinations corresponds to c1 ¼ c2 ¼ 0 and thus repre-
sents the basic projection onto a given strangeness sector in

an uncorrelated hadron gas. The other two parameter sets
for (c1, c2) are chosen to produce widely different values
for these observables in a noninteracting massless quark
gas at asymptotically high temperatures. From Fig. 1, it is
obvious that they are identical at low temperatures. Up to
Tc, independent of (c1, c2), these four quantities individu-
ally agree with the partial pressures of the jSj ¼ 1 mesons
and the jSj ¼ 1, 2, 3 baryons when one uses the actual
vacuum mass spectrum of the strange hadrons in an uncor-
related hadron gas. Specifically, Mðc1; c2Þ, B1ðc1; c2Þ,
B2ðc1; c2Þ, and B3ðc1; c2Þ reproduce the HRGmodel results
for PHRG

jSj¼1;M, P
HRG
jSj¼1;B, P

HRG
jSj¼2;B, and PHRG

jSj¼3;B, respectively

[16]. As can be seen from the insets of Fig. 2, such a
description of the LQCD results breaks down within the
Tc region for each of the meson and baryon sectors. Above
Tc, all these quantities show a smooth approach towards
their respective noninteracting, massless quark gas values,
depending on the values of c1 and c2.
Strangeness in the quark gluon plasma.—To investigate

whether the sDoF in the QGP can be described by weakly
interacting quasiquarks, we study correlations of net
strangeness fluctuations with fluctuations of net baryon
number and electric charge. Such observables were studied
in Refs. [10,18] for the second order correlations. We
extend these correlations up to the fourth order. If the
sDoF are weakly or noninteracting quasiquarks, then
strangeness S ¼ $1 is associated with the fractional
baryon number B ¼ 1=3 and electric charge Q ¼ $1=3,
giving

!BS
mn

!S
mþn

¼ ð$1Þn
3m

and
!QS
mn

!S
mþn

¼ ð$1Þmþn

3m
; (9)

where m, n > 0 and mþ n ¼ 2, 4.
In Fig. 3, we show the LQCD results for these ratios

scaled by the proper powers of fractional baryonic and
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FIG. 2 (color online). Four combinations [see Eqs. (3)–(6)] of net strangeness fluctuations and baryon-strangeness correlations
Mðc1; c2Þ, B1ðc1; c2Þ, B2ðc1; c2Þ, and B3ðc1; c2Þ (from left to right), each for three different sets of (c1, c2). Up to the chiral crossover
temperature Tc ¼ 154ð9Þ MeV [14] (shown by the shaded regions), independent of (c1, c2), these combinations give the partial
pressures of jSj ¼ 1 mesons (PHRG

jSj¼1;M) and jSj ¼ 1, 2, 3 baryons (PHRG
jSj¼1;B, P

HRG
jSj¼2;B, P

HRG
jSj¼3;B) in an uncorrelated gas of hadrons having

masses equal to their vacuum masses, i.e., in the HRG model (indicated by the solid lines at low temperatures). Above the Tc region,
such a hadronic description breaks down (shown in the insets) and all the combinations smoothly approach towards their respective,
(c1, c2)-dependent, high temperature limits (indicated by the solid horizontal lines at high temperatures) described by the non-
interacting massless strange quarks. The dotted horizontal lines at high temperatures depict the perturbative estimates (see the text) for
all these observables obtained using one-loop resummed HTL calculations [19]. The LQCD results for the N" ¼ 6 and 8 lattices are
shown by the open and filled symbols, respectively.
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FIG. 1 (color online). Two combinationsv1 and v2 [see Eqs. (7)
and (8)] of strangeness fluctuations and baryon-strangeness cor-
relations that vanish identically if the sDoF are described by an
uncorrelated gas of hadrons. Also shown is the difference of
quadratic and quartic baryon number fluctuations !B

2 $ !B
4 . This

observable also vanishes identically when the baryon number
carrying degrees of freedom are described by an uncorrelated
gas of strange as well as nonstrange baryons. The shaded region
indicates the chiral crossover temperature Tc ¼ 154ð9Þ MeV [14].
The lines at low and high temperatures indicate the two limiting
scenarios when the DoF are described by an uncorrelated hadron
gas and a noninteracting massless quark gas, respectively. The
LQCD results for theN" ¼ 6 and 8 lattices are shown by the open
and filled symbols, respectively.
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